Evaluating Bayesian spatial methods for modelling species distributions with clumped and restricted occurrence data
نویسندگان
چکیده
Statistical approaches for inferring the spatial distribution of taxa (Species Distribution Models, SDMs) commonly rely on available occurrence data, which is often clumped and geographically restricted. Although available SDM methods address some of these factors, they could be more directly and accurately modelled using a spatially-explicit approach. Software to fit models with spatial autocorrelation parameters in SDMs are now widely available, but whether such approaches for inferring SDMs aid predictions compared to other methodologies is unknown. Here, within a simulated environment using 1000 generated species' ranges, we compared the performance of two commonly used non-spatial SDM methods (Maximum Entropy Modelling, MAXENT and boosted regression trees, BRT), to a spatial Bayesian SDM method (fitted using R-INLA), when the underlying data exhibit varying combinations of clumping and geographic restriction. Finally, we tested how any recommended methodological settings designed to account for spatially non-random patterns in the data impact inference. Spatial Bayesian SDM method was the most consistently accurate method, being in the top 2 most accurate methods in 7 out of 8 data sampling scenarios. Within high-coverage sample datasets, all methods performed fairly similarly. When sampling points were randomly spread, BRT had a 1-3% greater accuracy over the other methods and when samples were clumped, the spatial Bayesian SDM method had a 4%-8% better AUC score. Alternatively, when sampling points were restricted to a small section of the true range all methods were on average 10-12% less accurate, with greater variation among the methods. Model inference under the recommended settings to account for autocorrelation was not impacted by clumping or restriction of data, except for the complexity of the spatial regression term in the spatial Bayesian model. Methods, such as those made available by R-INLA, can be successfully used to account for spatial autocorrelation in an SDM context and, by taking account of random effects, produce outputs that can better elucidate the role of covariates in predicting species occurrence. Given that it is often unclear what the drivers are behind data clumping in an empirical occurrence dataset, or indeed how geographically restricted these data are, spatially-explicit Bayesian SDMs may be the better choice when modelling the spatial distribution of target species.
منابع مشابه
The efficiency of sampling indices in estimating the spatial pattern of wooden species in central zagros forests (Kalkhani forest in Kouhdasht, Lorestan province, Iran)
It is so important to apply suitable methods to have a reliable estimation of the spatial distribution of trees. This research was aimed to determine and evaluate the spatial pattern of five species by distance- and density-based indices (Quercus brantii, Acer moncepesulanum, Crataegus aronia, Pistacia atlantica & Amygdalus lycioides) in the Kalkhani Forest in Koudasht Lorestan province, Iran. ...
متن کاملSpecies distribution modelling of invasive alien species; Pterois miles for current distribution and future suitable habitats
The present study aims to predict the potential geographic distribution and future expansion of invasive alien lionfish (Pterois miles) with ecological niche modelling along the Mediterranean Sea. The primary data consisted of occurrence points of P. miles in the Mediterranean and marine climatic data layers were collected from global databases. All the used models run 100% su...
متن کاملBayesian Inference for Spatial Beta Generalized Linear Mixed Models
In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symm...
متن کاملModelling of the spatial distribution of the rare plant Lilium ledebourii
The aim of this study was modelling the spatial distribution ofLilium ledebourii (Baker) Boiss. based on ecological characteristics, in order to predict potential habitats for conservation of a rare plant. Knowledge of the spatial distributions of rare and threatened species and the underlying ecological factors plays an important role in regional conservation assessments and development planni...
متن کاملSpatial count models on the number of unhealthy days in Tehran
Spatial count data is usually found in most sciences such as environmental science, meteorology, geology and medicine. Spatial generalized linear models based on poisson (poisson-lognormal spatial model) and binomial (binomial-logitnormal spatial model) distributions are often used to analyze discrete count data in which spatial correlation is observed. The likelihood function of these models i...
متن کامل